biology
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
- British Society for Cell Biology - What is a cell?
- MSD Manual - Consumer Version - Cells
- Chemistry LibreTexts - Cell Tutorial
- Roger Williams University Open Publishing - Introduction to Molecular and Cell Biology - Introduction to Cells
- National Center for Biotechnology Information - The Origin and Evolution of Cells
- University of Minnesota Libraries - The Science of Plants - Plant Cells and Tissues
- Biology LibreTexts - Discovery of Cells and Cell Theory
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
- cell - Children's Encyclopedia (Ages 8-11)
- cell - Student Encyclopedia (Ages 11 and up)
printPrint
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
- British Society for Cell Biology - What is a cell?
- MSD Manual - Consumer Version - Cells
- Chemistry LibreTexts - Cell Tutorial
- Roger Williams University Open Publishing - Introduction to Molecular and Cell Biology - Introduction to Cells
- National Center for Biotechnology Information - The Origin and Evolution of Cells
- University of Minnesota Libraries - The Science of Plants - Plant Cells and Tissues
- Biology LibreTexts - Discovery of Cells and Cell Theory
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
- cell - Children's Encyclopedia (Ages 8-11)
- cell - Student Encyclopedia (Ages 11 and up)
Also known as: cell system
Written by
Christopher Chow,
Wilfred D. Stein•All
Fact-checked by
The Editors of Encyclopaedia Britannica
Last Updated: •Article History
- Key People:
- Torbjörn Oskar Caspersson
- Daniel Mazia
- Fred H. Gage
- Lynn Margulis
- Ralph M. Steinman
- Related Topics:
- stem cell
- tissue
- adipose cell
- DNA repair
- membrane
See all related content →
Top Questions
What is a cell?
What is a cell?
A cell is a mass of cytoplasm that is bound externally by a cell membrane. Usually microscopic in size, cells are the smallest structural units of living matter and compose all living things. Most cells have one or more nuclei and other organelles that carry out a variety of tasks. Some single cells are complete organisms, such as a bacterium or yeast. Others are specialized building blocks of multicellular organisms, such as plants and animals.
What is cell theory?
What is cell theory?
Cell theory states that the cell is the fundamental structural and functional unit of living matter. In 1839 German physiologistTheodor Schwannand German botanistMatthias Schleidenpromulgated that cells are the “elementary particles of organisms” in both plants and animals and recognized that some organisms are unicellular and others multicellular.This theory marked a greatconceptualadvance in biology and resulted in renewed attention to the living processes that go on in cells.
What do cell membranes do?
What do cell membranes do?
The cell membrane surrounds every livingcell and delimits the cell from thesurrounding environment. It serves as a barrier to keep the contents of the cell in and unwanted substances out. It also functions as a gate to both actively and passively move essential nutrients into the cell and waste products out of it. Certain proteins in the cell membrane are involved with cell-to-cell communication and help the cell to respond to changes in its environment.
cell, in biology, the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed. A single cell is often a complete organism in itself, such as a bacterium or yeast. Other cells acquire specialized functions as they mature. These cells cooperate with other specialized cells and become the building blocks of large multicellular organisms, such as humans and other animals. Although cells are much larger than atoms, they are still very small. The smallest known cells are a group of tiny bacteria called mycoplasmas; some of these single-celled organisms are spheres as small as 0.2 μm in diameter (1μm = about 0.000039 inch), with a total mass of 10−14 gram—equal to that of 8,000,000,000 hydrogen atoms. Cells of humans typically have a mass 400,000 times larger than the mass of a single mycoplasma bacterium, but even human cells are only about 20 μm across. It would require a sheet of about 10,000 human cells to cover the head of a pin, and each human organism is composed of more than 30,000,000,000,000 cells.
This article discusses the cell both as an individual unit and as a contributing part of a larger organism. As an individual unit, the cell is capable of metabolizing its own nutrients, synthesizing many types of molecules, providing its own energy, and replicating itself in order to produce succeeding generations. It can be viewed as an enclosed vessel, within which innumerable chemical reactions take place simultaneously. These reactions are under very precise control so that they contribute to the life and procreation of the cell. In a multicellular organism, cells become specialized to perform different functions through the process of differentiation. In order to do this, each cell keeps in constant communication with its neighbours. As it receives nutrients from and expels wastes into its surroundings, it adheres to and cooperates with other cells. Cooperative assemblies of similar cells form tissues, and a cooperation between tissues in turn forms organs, which carry out the functions necessary to sustain the life of an organism.
Special emphasis is given in this article to animal cells, with some discussion of the energy-synthesizing processes and extracellular components peculiar to plants. (For detailed discussion of the biochemistry of plant cells, see photosynthesis. For a full treatment of the genetic events in the cell nucleus, see heredity.)
Bruce M. Alberts
The nature and function of cells
A cell is enclosed by a plasma membrane, which forms a selective barrier that allows nutrients to enter and waste products to leave. The interior of the cell is organized into many specialized compartments, or organelles, each surrounded by a separate membrane. One major organelle, the nucleus, contains the genetic information necessary for cell growth and reproduction. Each cell contains only one nucleus, whereas other types of organelles are present in multiple copies in the cellular contents, or cytoplasm. Organelles include mitochondria, which are responsible for the energy transactions necessary for cell survival; lysosomes, which digest unwanted materials within the cell; and the endoplasmic reticulum and the Golgi apparatus, which play important roles in the internal organization of the cell by synthesizing selected molecules and then processing, sorting, and directing them to their proper locations. In addition, plant cells contain chloroplasts, which are responsible for photosynthesis, whereby the energy of sunlight is used to convert molecules of carbon dioxide (CO2) and water (H2O) into carbohydrates. Between all these organelles is the space in the cytoplasm called the cytosol. The cytosol contains an organized framework of fibrous molecules that constitute the cytoskeleton, which gives a cell its shape, enables organelles to move within the cell, and provides a mechanism by which the cell itself can move. The cytosol also contains more than 10,000 different kinds of molecules that are involved in cellular biosynthesis, the process of making large biological molecules from small ones.
Specialized organelles are a characteristic of cells of organisms known as eukaryotes. In contrast, cells of organisms known as prokaryotes do not contain organelles and are generally smaller than eukaryotic cells. However, all cells share strong similarities in biochemical function.
Britannica QuizBiology BonanzaThe molecules of cells
Cells contain a special collection of molecules that are enclosed by a membrane. These molecules give cells the ability to grow and reproduce. The overall process of cellular reproduction occurs in two steps: cell growth and cell division. During cell growth, the cell ingests certain molecules from its surroundings by selectively carrying them through its cell membrane. Once inside the cell, these molecules are subjected to the action of highly specialized, large, elaborately folded molecules called enzymes. Enzymes act as catalysts by binding to ingested molecules and regulating the rate at which they are chemically altered. These chemical alterations make the molecules more useful to the cell. Unlike the ingested molecules, catalysts are not chemically altered themselves during the reaction, allowing one catalyst to regulate a specific chemical reaction in many molecules.
Biological catalysts create chains of reactions. In other words, a molecule chemically transformed by one catalyst serves as the starting material, or substrate, of a second catalyst and so on. In this way, catalysts use the small molecules brought into the cell from the outside environment to create increasingly complex reaction products. These products are used for cell growth and the replication of genetic material. Once the genetic material has been copied and there are sufficient molecules to support cell division, the cell divides to create two daughter cells. Through many such cycles of cell growth and division, each parent cell can give rise to millions of daughter cells, in the process converting large amounts of inanimate matter into biologically active molecules.
Are you a student?
Get a special academic rate on Britannica Premium.
Subscribe